4. The balloon has a volume of 1.5L at a temperature of 22°C. It is taken into a walk-in freezer. After several minutes in the freezer, the volume of the gas is 1.35 L. What is the temperature of the freezer?

Given	Find	Equation	Substitution
V ₁ =	T ₂	$T_2 = \underline{T_1 V_2}$	
		V_1	
T ₁ =			
V ₂ =			

IDEAL GAS LAW (R = 8.315 L kPa/mol K, R = 0.08206 L atm/mol K; volume in Liters, temp in Kelvin only!)

5. A cylinder of oxygen gas has a volume of 2.5 L. The pressure gauge reads 550 kPa when the room is 20° C. How many moles (n) of oxygen are in the cylinder?

Given	Find	Equation	Substitution
V=	n	n= <u>PV</u>	
P=		RT	
T=			
R=			

6. A chemist removes 0.200 moles of oxygen from the cylinder. What will the pressure gauge on the cylinder read now?

Given	Find	Equation	Substitution
V=	Р	P= <u>nRT</u>	
n=		V	
T=			
R=			

7. What temperature will be required for 0.0100 moles of argon gas to have a volume of 275 mL and a pressure of 0.95 atm? (Watch units!)

<u>Given</u>	Find	Equation	Substitution
V= P=	т	T= <u>PV</u> nR	
n=			
R=			